• DocumentCode
    1474902
  • Title

    A cellular analog network for MRF-based video motion detection

  • Author

    Luthon, Franck ; Dragomirescu, Daniela

  • Author_Institution
    Inst. Nat. Polytech. de Grenoble, France
  • Volume
    46
  • Issue
    2
  • fYear
    1999
  • fDate
    2/1/1999 12:00:00 AM
  • Firstpage
    281
  • Lastpage
    293
  • Abstract
    The implementation of a visual motion detection algorithm on an analog network is presented. The algorithm is based on Markov random field (MRF) modeling. Robust motion detection is achieved by using a spatiotemporal neighborhood for modeling pixel interactions. Not only are the moving edges detected, but also the inner part of moving regions. Moreover, the motion echo is eliminated. For hardware implementation, the algorithm is mapped onto a resistive network incorporating, at each pixel-node, light acquisition and on-chip processing. Elementary Markov cells are made of resistors and nonlinear current sources driven by observations, derived from luminance information acquired by photoreceptors. Electrical simulations of the cell are reported. Experimental results with synthetic and real-world image sequences exhibit the performance of the network. For circuit design, the switched-current technique is used. The circuit is intended for submicronic complementary metal-oxide-semiconductor (CMOS) technology
  • Keywords
    Markov processes; analogue processing circuits; cellular neural nets; image sequences; motion estimation; neural chips; switched current circuits; video signal processing; CMOS chip; Markov random field model; cellular analog network; electrical simulation; image sequence; spatiotemporal neighborhood; switched current circuit; video motion detection algorithm; CMOS technology; Cellular networks; Hardware; Image edge detection; Markov random fields; Motion detection; Network-on-a-chip; Resistors; Robustness; Spatiotemporal phenomena;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1057-7122
  • Type

    jour

  • DOI
    10.1109/81.747202
  • Filename
    747202