DocumentCode :
1474944
Title :
Improved Hurricane Ocean Vector Winds Using SeaWinds Active/Passive Retrievals
Author :
Laupattarakasem, Peth ; Jones, W. Linwood ; Hennon, Christopher C. ; Allard, John R. ; Harless, Amy R. ; Black, Peter G.
Author_Institution :
Sch. of Electr. Eng. & Comput. Sci., Univ. of Central Florida, Orlando, FL, USA
Volume :
48
Issue :
7
fYear :
2010
fDate :
7/1/2010 12:00:00 AM
Firstpage :
2909
Lastpage :
2923
Abstract :
The SeaWinds scatterometer, onboard the QuikSCAT satellite, infers global ocean vector winds (OVWs); however, for a number of reasons, these measurements in hurricanes are significantly degraded. This paper presents an improved hurricane OVW retrieval approach, known as Q-Winds, which is derived from combined SeaWinds active and passive measurements. In this technique, the effects of rain are implicitly included in a new geophysical model function, which relates oceanic brightness temperature and radar backscatter measurements (at the top of the atmosphere) to the surface wind vector under both clear sky and in the presence of light to moderate rain. This approach extends the useful wind speed measurement range for tropical cyclones beyond that exhibited by the standard SeaWinds Project Level-2B (L2B) 12.5-km wind vector algorithm. A description of the Q-Winds algorithm is given, and examples of OVW retrievals are presented for the Q-Winds and L2B 12.5-km algorithms for ten hurricane overpasses in 2003-2008. These data are also compared to independent surface wind vector estimates from the National Oceanic and Atmospheric Administration Hurricane Research Division´s objective hurricane surface wind analysis technique known as H*Wind. These comparisons suggest that the Q-Winds OVW product agrees better with independently derived H^ Wind analysis winds than does the conventional L2B OVW product.
Keywords :
ocean temperature; oceanographic techniques; rain; remote sensing by radar; storms; wind; AD 2003 to 2008; Q-Winds algorithm; QuikSCAT satellite; SeaWinds Project Level-2B wind vector algorithm; SeaWinds active-passive retrievals; SeaWinds scatterometer observations; geophysical model function; global ocean vector winds; hurricane ocean vector winds; hurricane surface wind analysis; oceanic brightness temperature; radar backscatter measurements; surface wind vector; tropical cyclones; H$^{ast}$Wind; QuikSCAT; SeaWinds; hurricane retrieval; ocean vector wind (OVW) retrieval; rain correction; scatterometer;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2010.2043110
Filename :
5451118
Link To Document :
بازگشت