Title :
Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation
Author :
Tuia, Devis ; Verrelst, Jochem ; Alonso, Luis ; Pérez-Cruz, Fernando ; Camps-Valls, Gustavo
Author_Institution :
Image Process. Lab., Univ. de Valencia, València, Spain
fDate :
7/1/2011 12:00:00 AM
Abstract :
This letter proposes a multioutput support vector regression (M-SVR) method for the simultaneous estimation of different biophysical parameters from remote sensing images. General retrieval problems require multioutput (and potentially nonlinear) regression methods. M-SVR extends the single-output SVR to multiple outputs maintaining the advantages of a sparse and compact solution by using an ε-insensitive cost function. The proposed M-SVR is evaluated in the estimation of chlorophyll content, leaf area index and fractional vegetation cover from a hyperspectral compact high-resolution imaging spectrometer images. The achieved improvement with respect to the single-output regression approach suggests that M-SVR can be considered a convenient alternative for nonparametric biophysical parameter estimation and model inversion.
Keywords :
geophysical image processing; image resolution; regression analysis; remote sensing; spectrometers; support vector machines; vegetation mapping; chlorophyll content estimation; fractional vegetation cover; hyperspectral compact high-resolution imaging spectrometer; leaf area index; multioutput support vector regression method; nonparametric biophysical parameter estimation; remote sensing biophysical parameter estimation; remote sensing image; single-output support vector regression method; Biological system modeling; Biomedical imaging; Estimation; Parameter estimation; Remote sensing; Support vector machines; Vegetation mapping; Biophysical parameter estimation; model inversion; regression; support vector regression (SVR);
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
DOI :
10.1109/LGRS.2011.2109934