DocumentCode :
1476332
Title :
A New Prediction Model Based on Belief Rule Base for System's Behavior Prediction
Author :
Si, Xiao-Sheng ; Hu, Chang-Hua ; Yang, Jian-Bo ; Zhou, Zhi-Jie
Author_Institution :
Xi´´an Inst. of Hi-tech, Xi´´an, China
Volume :
19
Issue :
4
fYear :
2011
Firstpage :
636
Lastpage :
651
Abstract :
In engineering practice, a system´s behavior constantly changes over time. To predict the behavior of a complex engineering system, a model can be built and trained using historical data. This paper addresses the forecasting problems with a belief rule base (BRB) to trace and predict system performance in a more interpretable and transparent way. More precisely, it extends the BRB method to handle a system´s behavior prediction, and a new prediction model based on BRB is presented, which can model and analyze prediction problems using not only numerical data but human judgmental information as well. The proposed forecasting model includes some unknown parameters that can be manually tuned and trained. To build an effective BRB forecasting model, a multiple-objective optimization model is provided to locally train the BRB prediction model by minimizing the mean square error (MSE). Finally, a practical case study is provided to illustrate the detailed implementation procedures and examine the feasibility of the proposed approach in engineering application. Furthermore, the comparative studies with other state-of-the-art prediction methods are carried out. It is shown that the proposed model is effective and can generate better prediction in terms of accuracy, as well as comprehensibility.
Keywords :
case-based reasoning; mean square error methods; optimisation; BRB method; behavior prediction; belief rule base; complex engineering system; mean square error; multiple-objective optimization model; Autoregressive processes; Cognition; Data models; Numerical models; Predictive models; Probabilistic logic; Uncertainty; Belief rule base (BRB); evidential-reasoning (ER) approach; expert system; nonlinear optimization; prediction;
fLanguage :
English
Journal_Title :
Fuzzy Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6706
Type :
jour
DOI :
10.1109/TFUZZ.2011.2130527
Filename :
5735206
Link To Document :
بازگشت