DocumentCode :
14769
Title :
Correction to “Convergence and Rate Analysis of Neural Networks for Sparse Approximation” [Sep 12 1377-1389]
Author :
Balavoine, Aurele ; Romberg, Justin ; Rozell, Christopher J.
Author_Institution :
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
Volume :
25
Issue :
8
fYear :
2014
fDate :
Aug. 2014
Firstpage :
1595
Lastpage :
1596
Abstract :
This document provides a correction to the proof of the theorem establishing the exponential speed of convergence of the Locally Competitive Algorithm (LCA) in the paper “Convergence and Rate Analysis of Neural Networks for Sparse Approximation.”
Keywords :
Algorithm design and analysis; Approximation algorithms; Approximation methods; Convergence; Lyapunov methods; Neural networks; Exponential convergence; Lyapunov function; global stability; locally competitive algorithm; nonsmooth objective; sparse approximation; sparse approximation.;
fLanguage :
English
Journal_Title :
Neural Networks and Learning Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
2162-237X
Type :
jour
DOI :
10.1109/TNNLS.2013.2292700
Filename :
6679215
Link To Document :
بازگشت