DocumentCode :
1478685
Title :
List decoding of algebraic-geometric codes
Author :
Shokrollahi, M. Amin ; Wasserman, Hal
Author_Institution :
AT&T Bell Labs., Murray Hill, NJ, USA
Volume :
45
Issue :
2
fYear :
1999
fDate :
3/1/1999 12:00:00 AM
Firstpage :
432
Lastpage :
437
Abstract :
We generalize Sudan´s (see J. Compl., vol.13, p.180-93, 1997) results for Reed-Solomon codes to the class of algebraic-geometric codes, designing algorithms for list decoding of algebraic geometric codes which can decode beyond the conventional error-correction bound (d-1)/2, d being the minimum distance of the code. Our main algorithm is based on an interpolation scheme and factorization of polynomials over algebraic function fields. For the latter problem we design a polynomial-time algorithm and show that the resulting overall list-decoding algorithm runs in polynomial time under some mild conditions. Several examples are included
Keywords :
algebraic geometric codes; decoding; interpolation; polynomials; Reed-Solomon codes; Sudan´s results; algebraic function fields; algebraic-geometric codes; error-correction bound; interpolation; linear code; list-decoding algorithm; minimum distance; polynomial-time algorithm; polynomials factorization; Algorithm design and analysis; Computer science; Computer science education; Decoding; Encoding; Galois fields; Interpolation; Linear code; Poles and zeros; Polynomials;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.748993
Filename :
748993
Link To Document :
بازگشت