DocumentCode :
1481791
Title :
Experimental Validation of a Hybrid Computational Model for Selective Stimulation Using Transverse Intrafascicular Multichannel Electrodes
Author :
Raspopovic, Stanisa ; Capogrosso, Marco ; Badia, Jordi ; Navarro, Xavier ; Micera, Silvestro
Author_Institution :
Translational Neural Eng. Lab., Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland
Volume :
20
Issue :
3
fYear :
2012
fDate :
5/1/2012 12:00:00 AM
Firstpage :
395
Lastpage :
404
Abstract :
Recently a hybrid model based on the finite element method and on a compartmental biophysical representation of peripheral nerve fibers and intraneural electrodes was developed founded on experimental physiological and histological data. The model appeared to be robust when dealing with uncertainties in parameter selection. However, an experimental validation of the findings provided by the model is required to fully characterize the potential of this approach. The recruitment properties of selective nerve stimulation using transverse intrafascicular multichannel electrodes (TIME) were investigated in this work in experiments with rats and were compared to model predictions. Animal experiments were performed using the same stimulation protocol as in the computer simulations in order to rigorously validate the model predictions and understand its limitations. Two different selectivity indexes were used, and new indexes for measuring electrode performance are proposed. The model predictions are in decent agreement with experimental results both in terms of recruitment curves and selectivity values. Results show that these models can be used for extensive studies targeting electrode shape design, active sites shape, and multipolar stimulation paradigms. From a neurophysiological point of view, the topographic organization of the rat sciatic nerve, on which the model was based, has been confirmed.
Keywords :
bioelectric phenomena; biomedical electrodes; finite element analysis; natural fibres; neuromuscular stimulation; active sites shape; compartmental biophysical representation; computer simulations; electrode shape design; experimental validation; finite element method; histological data; hybrid computational model; intraneural electrodes; multipolar stimulation paradigms; parameter selection; peripheral nerve fibers; physiological data; rat sciatic nerve; selective nerve stimulation; topographic organization; transverse intrafascicular multichannel electrodes; Biological system modeling; Computational modeling; Data models; Electrodes; Indexes; Mathematical model; Muscles; Electrical neural stimulation; finite element method; intrafascicular time electrodes; model validation; rat axon model; rat sciatic nerve; selectivity; Algorithms; Animals; Biophysics; Computer Simulation; Computers, Hybrid; Electric Stimulation; Electrodes, Implanted; Equipment Design; Finite Element Analysis; Models, Neurological; Muscle, Skeletal; Neurons; Rats; Rats, Sprague-Dawley; Recruitment, Neurophysiological; Reproducibility of Results; Sciatic Nerve;
fLanguage :
English
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1534-4320
Type :
jour
DOI :
10.1109/TNSRE.2012.2189021
Filename :
6177270
Link To Document :
بازگشت