• DocumentCode
    1485906
  • Title

    Binary linear quasi-perfect codes are normal

  • Author

    Hou, Xiang-Dong

  • Author_Institution
    Dept. of Math. & Stat., Wright State Univ., Dayton, OH, USA
  • Volume
    37
  • Issue
    2
  • fYear
    1991
  • fDate
    3/1/1991 12:00:00 AM
  • Firstpage
    378
  • Lastpage
    379
  • Abstract
    Whether quasi-perfect codes are normal is addressed. Let C be a code of length n, dimension k, covering radius R, and minimal distance d. It is proved that C is normal if d⩾2R-1. Hence all quasi-perfect codes are normal. Consequently, any [n,k ]R binary linear code with minimal distance d⩾2R-1 is normal
  • Keywords
    codes; binary linear codes; code dimension; code length; covering radius; minimal distance; normal codes; quasi-perfect codes; Error correction codes; Hamming weight; Linear code;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.75258
  • Filename
    75258