DocumentCode :
1487240
Title :
An Integrated Region-, Boundary-, Shape-Based Active Contour for Multiple Object Overlap Resolution in Histological Imagery
Author :
Ali, Sahirzeeshan ; Madabhushi, Anant
Author_Institution :
Dept. of Electr. & Comput. Eng., Rutgers Univ., New Brunswick, NJ, USA
Volume :
31
Issue :
7
fYear :
2012
fDate :
7/1/2012 12:00:00 AM
Firstpage :
1448
Lastpage :
1460
Abstract :
Active contours and active shape models (ASM) have been widely employed in image segmentation. A major limitation of active contours, however, is in their 1) inability to resolve boundaries of intersecting objects and to 2) handle occlusion. Multiple overlapping objects are typically segmented out as a single object. On the other hand, ASMs are limited by point correspondence issues since object landmarks need to be identified across multiple objects for initial object alignment. ASMs are also are constrained in that they can usually only segment a single object in an image. In this paper, we present a novel synergistic boundary and region-based active contour model that incorporates shape priors in a level set formulation with automated initialization based on watershed. We demonstrate an application of these synergistic active contour models using multiple level sets to segment nuclear and glandular structures on digitized histopathology images of breast and prostate biopsy specimens. Unlike previous related approaches, our model is able to resolve object overlap and separate occluded boundaries of multiple objects simultaneously. The energy functional of the active contour is comprised of three terms. The first term is the prior shape term, modeled on the object of interest, thereby constraining the deformation achievable by the active contour. The second term, a boundary-based term detects object boundaries from image gradients. The third term drives the shape prior and the contour towards the object boundary based on region statistics. The results of qualitative and quantitative evaluation on 100 prostate and 14 breast cancer histology images for the task of detecting and segmenting nuclei and lymphocytes reveals that the model easily outperforms two state of the art segmentation schemes (geodesic active contour and Rousson shape-based model) and on average is able to resolve up to 91% of overlapping/occluded structures in the images.
Keywords :
cancer; image segmentation; medical image processing; Rousson shape-based model; boundary-based active contour; breast cancer histology image; breast specimen; deformation; digitized histopathology image; glandular structure; histological imagery; image gradient; image segmentation; integrated region-based active contour; level set formulation; lymphocytes; multiple level set; multiple object overlap resolution; nuclear structure; occluded boundary; prostate biopsy specimen; prostate cancer histology image; region-based active contour model; shape-based active contour; synergistic active contour model; watershed; Active contours; Image segmentation; Level set; Principal component analysis; Shape; Training; Vectors; Active contours (ACs); breast; digital pathology; histopathology; hybrid segmentation models; prostate; shape prior; statistical shape models; Algorithms; Breast; Databases, Factual; Female; Histological Techniques; Humans; Image Processing, Computer-Assisted; Male; Models, Biological; Prostate;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/TMI.2012.2190089
Filename :
6179332
Link To Document :
بازگشت