DocumentCode :
1487433
Title :
Invariant spaces and fast transforms [convolution]
Author :
Zhechev, Bozhan Z.
Author_Institution :
Dept. of Comput. & Commun. Syst., Bulgarian Acad. of Sci., Sofia, Bulgaria
Volume :
46
Issue :
2
fYear :
1999
fDate :
2/1/1999 12:00:00 AM
Firstpage :
216
Lastpage :
219
Abstract :
In this paper a new approach to convolution based on the linear representation of the dihedral group is presented. In the decomposition of this representation, the Fourier operator appears. Some useful properties of the Fourier operator are summarized. Its projectors onto its eigenspaces are expressed with the Hartley operator. An orthogonal basis of the invariant spaces of the dihedral group is defined. A generalized method for analyzing and constructing fast transforms is proposed
Keywords :
Hadamard transforms; Hartley transforms; convolution; fast Fourier transforms; wavelet transforms; DFT; FFT; Fourier operator; Hartley operator; Hartley transform; convolution; dihedral group; eigenspaces; fast transforms; invariant spaces; linear representation; orthogonal basis; signal processing; wavelets; Convolution; Discrete Fourier transforms; Discrete transforms; Discrete wavelet transforms; Fast Fourier transforms; Filter bank; Hilbert space; Signal processing; Signal processing algorithms; Wavelet packets;
fLanguage :
English
Journal_Title :
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7130
Type :
jour
DOI :
10.1109/82.752957
Filename :
752957
Link To Document :
بازگشت