Title :
Green´s function for an unbounded biaxial medium in cylindrical coordinates
Author :
Cottis, Panayotis G. ; Vazouras, Christos N. ; Spyrou, C.
Author_Institution :
Dept. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Greece
fDate :
1/1/1999 12:00:00 AM
Abstract :
The dyadic Green´s function for an unbounded biaxial medium is treated analytically in the Fourier domain. The Green´s function is initially expressed as a triple Fourier integral, which is next reduced to a double one by performing the integration over the longitudinal Fourier variable. A delta-type source term is extracted, which is dependent on the particular coordinate system
Keywords :
Fourier analysis; Green´s function methods; anisotropic media; electromagnetic wave propagation; integral equations; integration; EM wave propagation; EM wave radiation; Fourier domain; cylindrical coordinates; cylindrical waveguides; delta-type source term; double Fourier integral; dyadic Green´s function; integration; longitudinal Fourier variable; triple Fourier integral; unbounded biaxial anisotropic medium; Absorption; Anisotropic magnetoresistance; Electromagnetic scattering; Electromagnetic waveguides; Fourier transforms; Green´s function methods; Integral equations; Magnetic anisotropy; Permittivity; Tensile stress;
Journal_Title :
Antennas and Propagation, IEEE Transactions on