DocumentCode :
1488071
Title :
On Gaussian Optimal Smoothing of Non-Linear State Space Models
Author :
Särkkä, Simo ; Hartikainen, Jouni
Author_Institution :
Aalto Univ., Aalto, Finland
Volume :
55
Issue :
8
fYear :
2010
Firstpage :
1938
Lastpage :
1941
Abstract :
In this note we shall present a new Gaussian approximation based framework for approximate optimal smoothing of non-linear stochastic state space models. The approximation framework can be used for efficiently solving non-linear fixed-interval, fixed-point and fixed-lag optimal smoothing problems. We shall also numerically compare accuracies of approximations, which are based on Taylor series expansion, unscented transformation, central differences and Gauss-Hermite quadrature.
Keywords :
Gaussian processes; approximation theory; smoothing methods; state-space methods; Gauss-Hermite quadrature; Gaussian approximation; Gaussian optimal smoothing; Taylor series expansion; approximate optimal smoothing; approximation framework; fixed-lag optimal smoothing; fixed-point optimal smoothing; nonlinear fixed-interval optimal smoothing; nonlinear state space models; nonlinear stochastic state space models; unscented transformation; Bayesian methods; Filtering; Gaussian approximation; Gaussian noise; Gaussian processes; Noise measurement; Nonlinear filters; Postal services; Smoothing methods; State-space methods; Stochastic processes; Taylor series; Time measurement; Bayesian smoothing; Gaussian assumed density smoothing; non-linear Rauch-Tung-Striebel smoothing; non-linear optimal smoothing;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2010.2050017
Filename :
5462954
Link To Document :
بازگشت