• DocumentCode
    1488071
  • Title

    On Gaussian Optimal Smoothing of Non-Linear State Space Models

  • Author

    Särkkä, Simo ; Hartikainen, Jouni

  • Author_Institution
    Aalto Univ., Aalto, Finland
  • Volume
    55
  • Issue
    8
  • fYear
    2010
  • Firstpage
    1938
  • Lastpage
    1941
  • Abstract
    In this note we shall present a new Gaussian approximation based framework for approximate optimal smoothing of non-linear stochastic state space models. The approximation framework can be used for efficiently solving non-linear fixed-interval, fixed-point and fixed-lag optimal smoothing problems. We shall also numerically compare accuracies of approximations, which are based on Taylor series expansion, unscented transformation, central differences and Gauss-Hermite quadrature.
  • Keywords
    Gaussian processes; approximation theory; smoothing methods; state-space methods; Gauss-Hermite quadrature; Gaussian approximation; Gaussian optimal smoothing; Taylor series expansion; approximate optimal smoothing; approximation framework; fixed-lag optimal smoothing; fixed-point optimal smoothing; nonlinear fixed-interval optimal smoothing; nonlinear state space models; nonlinear stochastic state space models; unscented transformation; Bayesian methods; Filtering; Gaussian approximation; Gaussian noise; Gaussian processes; Noise measurement; Nonlinear filters; Postal services; Smoothing methods; State-space methods; Stochastic processes; Taylor series; Time measurement; Bayesian smoothing; Gaussian assumed density smoothing; non-linear Rauch-Tung-Striebel smoothing; non-linear optimal smoothing;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2010.2050017
  • Filename
    5462954