Title :
Bandwidth enhancement, radiation properties and ground-dependent response of slotted antennas integrated into wireless sensors
Author :
Kakoyiannis, Constantine G. ; Kyrligkitsi, A. ; Constantinou, Philip
Author_Institution :
Mobile Radio Commun. Lab., Nat. Tech. Univ. of Athens, Athens, Greece
fDate :
5/1/2010 12:00:00 AM
Abstract :
The design of low-cost, wideband, printed inverted-F antennas (PIFAs) that are suitable for portable devices operating at the 2-3 GHz band is described. The design specifications were extracted according to the constraints of high data rate wireless sensor devices. Reactive tuning through slot loading was applied to enforce degeneration of a higher resonance, and thus double the bandwidth in the band of interest. Three slotted antenna configurations are reported plus a baseline configuration; a thorough numerical characterisation of performance is provided. Fractional bandwidth (FBW) in the range 22-34% was achieved, which is almost quadruple that of existing implementations. The antennas exhibit total efficiencies around 80% and are elliptically polarised. A suitable figure-of-merit is suggested for performance comparisons; it attempts to capture overall antenna performance in a single quantity. Antenna performance depends heavily on electrical size, which depends on the size of the ground plane, since the RF ground is an integral part of the total radiator. The ground-effect study showed that wrong choice of size can force resonant modes to vanish. Best performance for a slotted PIFA was obtained with a ground plane measuring 0.20?? ?? 0.28??, significantly smaller than predicted in prior studies. Bandwidth augmentation through slot loading is supported by measurements. Fabricated antennas with sub-optimal ground plane sizes exhibit FBWs in the range 20-23%.
Keywords :
UHF antennas; antenna radiation patterns; broadband antennas; microstrip antennas; planar inverted-F antennas; slot antennas; wireless sensor networks; RF ground; bandwidth augmentation; bandwidth enhancement; fractional bandwidth; frequency 2 GHz to 3 GHz; ground-dependent response; high data rate wireless sensor devices; portable devices; printed inverted-F antennas; radiation property; resonant modes; slotted antenna; total radiator; wideband antennas; wireless sensor networks;
Journal_Title :
Microwaves, Antennas & Propagation, IET
DOI :
10.1049/iet-map.2009.0321