Title :
The unbiased gradient type LS algorithm for adaptive spectrum estimation
Author :
Kim, Daehoon ; Alexander, Winser E.
Author_Institution :
Mayo Clinic, Rochester, MN, USA
fDate :
3/1/1990 12:00:00 AM
Abstract :
A gradient-type-least-squares (LS) algorithm for adaptive implementation of Pisarenko´s method is presented. The algorithm, which uses the Lagrange multiplier technique for parameter updating, has faster convergence and improved tracking capability when compared to a least-mean-squares-type algorithm. Moreover, since the gradient-type LS algorithm does not use an approximation for deriving the updated weight vector, tracking errors in the transient region are smaller than with Reddy´s LS algorithm. Convergence analysis of the gradient-type LS algorithm in the vicinity of a stationary point shows that it is unbiased
Keywords :
convergence of numerical methods; parameter estimation; signal processing; spectral analysis; LS algorithm; Lagrange multiplier technique; Pisarenko´s method; adaptive spectrum estimation; convergence; least squares algorithm; parameter updating; tracking capability; transient region; unbiased gradient type; updated weight vector; Approximation algorithms; Biomedical signal processing; Convergence; Frequency estimation; Lagrangian functions; Radar tracking; Sensor arrays; Signal processing algorithms; Spectral analysis; White noise;
Journal_Title :
Circuits and Systems, IEEE Transactions on