DocumentCode :
1489990
Title :
The unbiased gradient type LS algorithm for adaptive spectrum estimation
Author :
Kim, Daehoon ; Alexander, Winser E.
Author_Institution :
Mayo Clinic, Rochester, MN, USA
Volume :
37
Issue :
3
fYear :
1990
fDate :
3/1/1990 12:00:00 AM
Firstpage :
416
Lastpage :
420
Abstract :
A gradient-type-least-squares (LS) algorithm for adaptive implementation of Pisarenko´s method is presented. The algorithm, which uses the Lagrange multiplier technique for parameter updating, has faster convergence and improved tracking capability when compared to a least-mean-squares-type algorithm. Moreover, since the gradient-type LS algorithm does not use an approximation for deriving the updated weight vector, tracking errors in the transient region are smaller than with Reddy´s LS algorithm. Convergence analysis of the gradient-type LS algorithm in the vicinity of a stationary point shows that it is unbiased
Keywords :
convergence of numerical methods; parameter estimation; signal processing; spectral analysis; LS algorithm; Lagrange multiplier technique; Pisarenko´s method; adaptive spectrum estimation; convergence; least squares algorithm; parameter updating; tracking capability; transient region; unbiased gradient type; updated weight vector; Approximation algorithms; Biomedical signal processing; Convergence; Frequency estimation; Lagrangian functions; Radar tracking; Sensor arrays; Signal processing algorithms; Spectral analysis; White noise;
fLanguage :
English
Journal_Title :
Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0098-4094
Type :
jour
DOI :
10.1109/31.52735
Filename :
52735
Link To Document :
بازگشت