Title :
Registration of Images With Outliers Using Joint Saliency Map
Author :
Qin, Binjie ; Gu, Zhijun ; Sun, Xianjun ; Lv, Yisong
Author_Institution :
Dept. of Biomed. Eng., Shanghai Jiao Tong Univ., Shanghai, China
Abstract :
Mutual information (MI) is a popular similarity measure for image registration, whereby good registration can be achieved by maximizing the compactness of the clusters in the joint histogram. However, MI is sensitive to the ldquooutlierrdquo objects that appear in one image but not the other, and also suffers from local and biased maxima. We propose a novel joint saliency map (JSM) to highlight the corresponding salient structures in the two images, and emphatically group those salient structures into the smoothed compact clusters in the weighted joint histogram. This strategy could solve both the outlier and the local maxima problems. Experimental results show that the JSM-MI based algorithm is not only accurate but also robust for registration of challenging image pairs with outliers.
Keywords :
image registration; pattern clustering; statistical analysis; JSM; JSM-MI based algorithm; cluster compactness; image registration; joint histogram; joint saliency map; local maxima problem; mutual information; Image registration; joint saliency map; mutual information; outliers; weighted joint histogram;
Journal_Title :
Signal Processing Letters, IEEE
DOI :
10.1109/LSP.2009.2033728