Title :
Novel Bounds on the Capacity of the Binary Deletion Channel
Author :
Fertonani, Dario ; Duman, Tolga M.
Author_Institution :
Sch. of Electr., Comput. & Energy Eng., Arizona State Univ., Tempe, AZ, USA
fDate :
6/1/2010 12:00:00 AM
Abstract :
We present novel bounds on the capacity of the independent and identically distributed binary deletion channel. Four upper bounds are obtained by providing the transmitter and the receiver with genie-aided information on suitably-defined random processes. Since some of the proposed bounds involve infinite series, we also introduce provable inequalities that lead to more manageable results. For most values of the deletion probability, these bounds improve the existing ones and significantly narrow the gap with the available lower bounds. Exploiting the same auxiliary processes, we also derive, as a by-product, two simple lower bounds on the channel capacity, which, for low values of the deletion probability, are almost as good as the best existing lower bounds.
Keywords :
channel capacity; probability; receivers; transmitters; auxiliary process; channel capacity; deletion probability; distributed binary deletion channel; genie-aided information; random process; receiver; transmitter; Capacity planning; Channel capacity; Error correction; Error probability; Mutual information; Power engineering and energy; Random processes; Random variables; Upper bound; Binary deletion channel; capacity bounds; channel capacity;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2010.2046210