DocumentCode :
1496381
Title :
Bounds on covering codes with the rank metric
Author :
Gadouleau, Maximilien ; Yan, Zhiyuan
Author_Institution :
Crestic, Univ. de Reims Champagne-Ardenne, Reims, France
Volume :
13
Issue :
9
fYear :
2009
Firstpage :
691
Lastpage :
693
Abstract :
In this paper, we investigate geometrical properties of the rank metric space and covering properties of rank metric codes. We first establish an analytical expression for the intersection of two balls with rank radii, and then derive an upper bound on the volume of the union of multiple balls with rank radii. Using these geometrical properties, we derive both upper and lower bounds on the minimum cardinality of a code with a given rank covering radius. The geometrical properties and bounds proposed in this paper are significant to the design, decoding, and performance analysis of rank metric codes.
Keywords :
codes; geometrical property; rank metric code; rank metric space; Computer errors; Cryptography; Decoding; Error correction; Error correction codes; Guidelines; Memory; Network coding; Performance analysis; Upper bound; Error control codes, covering radius, rank metric codes, geometrical properties, intersection number;
fLanguage :
English
Journal_Title :
Communications Letters, IEEE
Publisher :
ieee
ISSN :
1089-7798
Type :
jour
DOI :
10.1109/LCOMM.2009.090447
Filename :
5282377
Link To Document :
بازگشت