DocumentCode :
14964
Title :
Matching pursuit-based singular vectors estimation for large MIMO beamforming
Author :
Mengyao Wang ; Xiantao Cheng ; Xiaodong Zhu
Author_Institution :
Nat. Key Lab. of Sci. & Technol. on Commun., Univ. of Electron. Sci. & Technol. of China, Chengdu, China
Volume :
51
Issue :
1
fYear :
2015
fDate :
1 8 2015
Firstpage :
56
Lastpage :
57
Abstract :
In multiple-input-multiple-output (MIMO) systems, beamforming can maximise the signal-to-noise ratio by using the principal right and left singular vectors of the channel matrix as transmit and receive beam vectors, respectively. A matching pursuit (MP)-based singular vectors estimation (SVE) scheme is proposed, referred to as MP-SVE, for beamforming transmission and detection in large MIMO systems. By judiciously exploiting the specific properties of large MIMO channel matrix, the proposed MP-SVE is able to determine the optimal beamforming vector pair while circumventing the burdensome channel estimation and singular value decomposition. The simulations verify that with the same training overhead, the proposed MP-SVE remarkably outperforms the state-of-the-art counterparts.
Keywords :
MIMO communication; array signal processing; channel estimation; iterative methods; singular value decomposition; MIMO beamforming; MIMO channel matrix; MP-SVE; SNR; SVD; channel estimation; left singular vectors; matching pursuit-based singular vectors estimation; multiple-input-multiple-output systems; optimal beamforming vector pair; right singular vectors; signal-to-noise ratio; singular value decomposition;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2014.3197
Filename :
7006839
Link To Document :
بازگشت