DocumentCode :
149768
Title :
A generic participatory sensing framework for multi-modal datasets
Author :
Fang-Jing Wu ; Tie Luo
Author_Institution :
Inst. for Infocomm Res., A*STAR, Singapore, Singapore
fYear :
2014
fDate :
21-24 April 2014
Firstpage :
1
Lastpage :
6
Abstract :
Participatory sensing has become a promising data collection approach to crowdsourcing data from multi-modal data sources. This paper proposes a generic participatory sensing framework that consists of a set of well-defined modules in support of diverse use cases. This framework incorporates a concept of “human-as-a-sensor” into participatory sensing and allows the public crowd to contribute human observations as well as sensor measurements from their mobile devices. We specifically address two issues: incentive and extensibility, where the former refers to motivating participants to contribute high-quality data while the latter refers to accommodating heterogeneous and uncertain data sources. To address the incentive issue, we design an incentive engine to attract high-quality contributed data independent of data modalities. This engine works together with a novel social network that we introduce into participatory sensing, where participants are linked together and interact with each other based on data quality and quantity they have contributed. To address the extensibility issue, the proposed framework embodies application-agnostic design and provides an interface to external datasets. To demonstrate and verify this framework, we have developed a prototype mobile application called imReporter, which crowdsources hybrid (image-text) reports from participants in an urban city, and incorporates an external dataset from a public data mall. A pilot study was also carried out with 15 participants for 3 consecutive weeks, and the result confirms that our proposed framework fulfills its design goals.
Keywords :
mobile computing; crowdsourcing data; data collection approach; data modalities; external datasets; generic participatory sensing framework; human observations; human-as-a-sensor; incentive engine; mobile devices; multimodal data sources; multimodal datasets; sensor measurements; social network; uncertain data sources; Atmospheric measurements; Educational Activities Board; Engines; Global Positioning System; Mobile handsets; Sensors; Social network services; Crowdsourcing; incentive mechanism; participatory sensing; pervasive computing; social network;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on
Conference_Location :
Singapore
Print_ISBN :
978-1-4799-2842-2
Type :
conf
DOI :
10.1109/ISSNIP.2014.6827702
Filename :
6827702
Link To Document :
بازگشت