• DocumentCode
    1498069
  • Title

    Reed-Muller tree-based minimisation of fixed polarity Reed-Muller expansions

  • Author

    Aborhey, S.

  • Author_Institution
    Dept. of Technol., Univ. of South Pacific, Suva, Fiji
  • Volume
    148
  • Issue
    2
  • fYear
    2001
  • fDate
    3/1/2001 12:00:00 AM
  • Firstpage
    63
  • Lastpage
    70
  • Abstract
    A heuristic method for the determination of optimum or near-optimum fixed polarity Reed-Muller (FPRM) representation of multiple output, completely specified Boolean systems is presented. The Reed-Muller (RM) tree representation forms the conceptual framework for the method, which involves manipulations of arrays of cubes. A coding method that is well adapted to RM tree representation is presented. The minimisation method takes as input a disjoint sum of cubes representation of the Boolean system. Using Karpovsky´s complexity estimates as the basis for polarity selection, the method obtains the FPRM expansion by generating in one run an optimum or near optimum Reed-Muller tree representation
  • Keywords
    Boolean functions; Reed-Muller codes; computational complexity; encoding; minimisation; Boolean system; Karpovsky´s complexity estimates; Reed-Muller tree-based minimisation; coding method; completely specified Boolean systems; conceptual framework; disjoint sum; fixed polarity Reed-Muller expansions; heuristic method; minimisation method; polarity selection;
  • fLanguage
    English
  • Journal_Title
    Computers and Digital Techniques, IEE Proceedings -
  • Publisher
    iet
  • ISSN
    1350-2387
  • Type

    jour

  • DOI
    10.1049/ip-cdt:20010252
  • Filename
    926401