• DocumentCode
    1502137
  • Title

    Maximum entropy and robust prediction on a simplex

  • Author

    Poor, H. Vincent

  • Author_Institution
    Dept. of Electr. Eng., Princeton Univ., NJ, USA
  • Volume
    45
  • Issue
    4
  • fYear
    1999
  • fDate
    5/1/1999 12:00:00 AM
  • Firstpage
    1150
  • Lastpage
    1164
  • Abstract
    The related problems of (finite-length) robust prediction and maximizing spectral entropy over a simplex of covariance matrices are considered. General properties of iterative solutions of these problems are developed, and monotone convergence proofs are presented for two algorithms that provide such solutions. The analogous problems for simplexes of spectral densities are also considered
  • Keywords
    convergence of numerical methods; covariance matrices; maximum entropy methods; minimax techniques; prediction theory; spectral analysis; algorithms; covariance matrices; finite-length robust prediction; iterative solutions; maximum entropy; minimax robust prediction; monotone convergence proofs; simplex; spectral densities; spectral entropy; Centralized control; Covariance matrix; Entropy; Helium; Iterative algorithms; Minimax techniques; Predictive models; Robustness; Stochastic processes; Uncertainty;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.761257
  • Filename
    761257