DocumentCode :
1502548
Title :
The Linear Complexity of Whiteman\´s Generalized Cyclotomic Sequences of Period p^{m+1}q^{n+1}
Author :
Hu, Liqin ; Yue, Qin ; Wang, Minhong
Author_Institution :
Dept. of Math., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China
Volume :
58
Issue :
8
fYear :
2012
Firstpage :
5534
Lastpage :
5543
Abstract :
In this paper, we mainly get three results. First, let p, q be distinct primes with ((p-1)p,(q-1)q)=(p-1,q-1)=e ; we give a method to compute the linear complexity of Whiteman´s generalized cyclotomic sequences of period pm+1qn+1. Second, if e=4, we compute the exact linear complexity of Whiteman´s generalized cyclotomic sequences. Third, if p≡q 5 (mod 8), gcd(p-1, q-1)=4, and we fix a common primitive root g of both p and q, then 2∈H0=(g), which is a subgroup of the multiplicative group Z*pq, if and only if Whiteman´s generalized cyclotomic numbers of order 4 depend on the decomposition pq=a2+4b2 with 4|b.
Keywords :
m-sequences; Whiteman generalized cyclotomic numbers; Whiteman generalized cyclotomic sequences; common primitive root; linear complexity; multiplicative group; Complexity theory; Indexes; Polynomials; Radar applications; Random sequences; Zinc; Generalized cyclotomic number; linear complexity;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2196254
Filename :
6189390
Link To Document :
بازگشت