DocumentCode :
1502761
Title :
Humans and Bots in Internet Chat: Measurement, Analysis, and Automated Classification
Author :
Gianvecchio, Steven ; Xie, Mengjun ; Wu, Zhenyu ; Wang, Haining
Author_Institution :
MITRE Corp., McLean, VA, USA
Volume :
19
Issue :
5
fYear :
2011
Firstpage :
1557
Lastpage :
1571
Abstract :
The abuse of chat services by automated programs, known as chat bots, poses a serious threat to Internet users. Chat bots target popular chat networks to distribute spam and malware. In this paper, we first conduct a series of measurements on a large commercial chat network. Our measurements capture a total of 16 different types of chat bots ranging from simple to advanced. Moreover, we observe that human behavior is more complex than bot behavior. Based on the measurement study, we propose a classification system to accurately distinguish chat bots from human users. The proposed classification system consists of two components: 1) an entropy-based classifier; and 2) a Bayesian-based classifier. The two classifiers complement each other in chat bot detection. The entropy-based classifier is more accurate to detect unknown chat bots, whereas the Bayesian-based classifier is faster to detect known chat bots. Our experimental evaluation shows that the proposed classification system is highly effective in differentiating bots from humans.
Keywords :
Bayes methods; Internet; electronic messaging; entropy; invasive software; pattern classification; software agents; unsolicited e-mail; Bayesian-based classifier; Internet chat; automated classification; automated programs; chat bot detection; chat bots; entropy-based classifier; human behavior; malware; spam; Bayesian methods; Delay; Electronic mail; Humans; Internet; Malware; Protocols; Bots; Internet chat; classification; measurement;
fLanguage :
English
Journal_Title :
Networking, IEEE/ACM Transactions on
Publisher :
ieee
ISSN :
1063-6692
Type :
jour
DOI :
10.1109/TNET.2011.2126591
Filename :
5755133
Link To Document :
بازگشت