Title :
Optimal design of a thermistor probe for surface measurement of cerebral blood flow
Author :
Wei, Datong ; Saidel, Gerald M. ; Jones, Stephen C.
Author_Institution :
Dept. of Biomed. Eng., Case Western Reserve Univ., Cleveland, OH, USA
Abstract :
Microthermistors are put on the surface of the cerebral cortex to monitor local cerebral blood flow (CBF) continuously with minimal tissue damage and disturbance to the normal physiological state. Using a distributed, dynamic model of the measurement system, the authors simulated the effects of this flow measurement method under isothermal and adiabatic boundary conditions. Numerical results show that the adiabatic boundary condition can provide maximal sensitivity to perfusion changes at physiological perfusion levels. The constant power and constant temperature operating modes are compared in terms of output relation, sensitivity, and frequency response through analytical and numerical solutions. While the steady-state relations between thermistor measurements and perfusion for the two modes do not differ significantly, the constant temperature mode has better frequency response. Analytical results show that the relative sensitivity is the same for the two modes and is approximately proportional to the radius of thermistor.
Keywords :
biomedical equipment; biomedical measurement; biothermics; brain; flow measurement; haemodynamics; probes; thermistors; adiabatic boundary conditions; cerebral blood flow; distributed dynamic model; isothermal boundary conditions; measurement system; microthermistors; optimal design; surface measurement; thermistor probe; Biomedical monitoring; Blood flow; Boundary conditions; Brain modeling; Cerebral cortex; Fluid flow measurement; Frequency response; Probes; Temperature sensors; Thermistors; Cerebrovascular Circulation; Electric Conductivity; Equipment Design; Humans; Models, Biological; Sensitivity and Specificity; Temperature; Thermography;
Journal_Title :
Biomedical Engineering, IEEE Transactions on