DocumentCode :
1504288
Title :
Robust Covariance Estimation for Data Fusion From Multiple Sensors
Author :
Sequeira, João ; Tsourdos, Antonios ; Lazarus, Samuel B.
Author_Institution :
Inst. for Syst. & Robot., Univ. Tec. de Lisboa, Lisbon, Portugal
Volume :
60
Issue :
12
fYear :
2011
Firstpage :
3833
Lastpage :
3844
Abstract :
This paper addresses the robust estimation of a covariance matrix to express uncertainty when fusing information from multiple sensors. This is a problem of interest in multiple domains and applications, namely, in robotics. This paper discusses the use of estimators using explicit measurements from the sensors involved versus estimators using only covariance estimates from the sensor models and navigation systems. Covariance intersection and a class of orthogonal Gnanadesikan-Kettenring estimators are compared using the 2-norm of the estimates. A Monte Carlo simulation of a typical mapping experiment leads to conclude that covariance estimation systems with a hybrid of the two estimators may yield the best results.
Keywords :
Monte Carlo methods; covariance matrices; estimation theory; sensor fusion; Monte Carlo simulation; covariance estimation system; covariance intersection; covariance matrix; data fusion; mapping experiment; multiple sensor; navigation system; orthogonal Gnanadesikan-Kettenring estimator; robust estimation; Covariance matrix; Maximum likelihood estimation; Monte Carlo methods; Robustness; Sensor fusion; Covariance estimation; covariance intersection (CI); data fusion; robust estimation;
fLanguage :
English
Journal_Title :
Instrumentation and Measurement, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9456
Type :
jour
DOI :
10.1109/TIM.2011.2141230
Filename :
5756232
Link To Document :
بازگشت