Title :
Artifact-resistant power-efficient design of finger-ring plethysmographic sensors
Author :
Rhee, Sokwoo ; Yang, Boo-Ho ; Asada, Haruhiko Harry
Author_Institution :
Dept. of Mech. Eng., MIT, Cambridge, MA, USA
fDate :
7/1/2001 12:00:00 AM
Abstract :
A miniaturized, telemetric, photoplethysmograph (PPG) sensor for long-term, continuous monitoring is presented. The sensor, called a "ring sensor," is attached to a finger base for monitoring beat-to-beat pulsation, and the data is sent to a host computer via a radio-frequency transmitter. Two major design issues are addressed: one is to minimize motion artifact and the other is to minimize the consumption of battery power. An efficient double ring design is developed to lower the influence of external force, acceleration, and ambient light, and to hold the sensor gently and securely on the skin, so that the circulation at the finger may not be obstructed. Total power consumption is analyzed in relation to characteristics of individual components, sampling rate, and CPU clock speed. Optimal operating conditions are obtained for minimizing the power budget. A prototype ring sensor is designed and built based on the power budget analysis and the artifact-resistive attachment method. It is verified through experiments that the ring sensor is resistant to interfering forces and acceleration acting on the ring body. Benchmarking tests with FDA-approved PPG and electrocardiogram reveal that the ring sensor is comparable to those devices in detecting beat-to-beat pulsation despite disturbances.
Keywords :
biomedical telemetry; biomedical transducers; haemodynamics; patient monitoring; plethysmography; CPU clock speed; artifact-resistant power-efficient design; beat-to-beat pulsation monitoring; benchmarking tests; finger-ring plethysmographic sensors; interfering forces; long-term continuous monitoring; medical instrumentation; miniaturized telemetric photoplethysmograph sensor; optimal operating conditions; power budget minimization; sampling rate; wearable sensor; Acceleration; Batteries; Computerized monitoring; Fingers; Force sensors; Radio frequency; Radio transmitters; Sensor phenomena and characterization; Skin; Telemetry; Adult; Algorithms; Artifacts; Benchmarking; Electric Power Supplies; Equipment Design; Fingers; Humans; Male; Monitoring, Ambulatory; Plethysmography; Pressure; Pulsatile Flow; Reference Values; Reproducibility of Results; Signal Processing, Computer-Assisted;
Journal_Title :
Biomedical Engineering, IEEE Transactions on