DocumentCode :
1508593
Title :
Anatomical model matching with fuzzy implicit surfaces for segmentation of thoracic volume scans
Author :
Lelieveldt, B.P.F. ; van der Geest, R.J. ; Rezaee, M. Ramze ; Bosch, J.G. ; Reiber, J.H.C.
Author_Institution :
Dept. of Radiol., Leiden Univ., Netherlands
Volume :
18
Issue :
3
fYear :
1999
fDate :
3/1/1999 12:00:00 AM
Firstpage :
218
Lastpage :
230
Abstract :
Many segmentation methods for thoracic volume data require manual input in the form of a seed point, initial contour, volume of interest etc. The aim of the work presented here is to further automate this segmentation initialization step. In this paper an anatomical modeling and matching method is proposed to coarsely segment thoracic volume data into anatomically labeled regions. An anatomical model of the thorax is constructed in two steps: (1) individual organs are modeled with blended fuzzy implicit surfaces and (2) the single organ models are grouped into a tree structure with a solid modeling technique named constructive solid geometry (CSG). The combination of CSG with fuzzy implicit surfaces allows a hierarchical scene description by means of a boundary model, which characterizes the scene volume as a boundary potential function. From this boundary potential, an energy function is defined which is minimal when the model is registered to the tissue-air transitions in thoracic magnetic resonance imaging (MRI) data. This allows automatic registration in three steps: feature detection, initial positioning and energy minimization. The model matching has been validated in phantom simulations and on 15 clinical thoracic volume scans from different subjects. In 13 of these sets the matching method accurately partitioned the image volumes into a set of volumes of interest for the heart, lungs, cardiac ventricles, and thorax outlines. The method is applicable to segmentation of various types of thoracic MR-images, provided that a large part of the thorax is contained in the image volume.
Keywords :
biomedical MRI; cardiology; feature extraction; image matching; image segmentation; lung; medical image processing; physiological models; anatomical model matching; boundary model; boundary potential function; cardiac MRI; cardiac ventricles; constructive solid geometry; fuzzy implicit surfaces; heart; hierarchical scene description; magnetic resonance imaging; medical diagnostic imaging; model driven segmentation; thoracic volume scans segmentation; thorax outlines; tissue-air transitions; Computer vision; Geometry; Heart; Imaging phantoms; Layout; Magnetic resonance imaging; Potential energy; Solid modeling; Thorax; Tree data structures; Heart; Humans; Image Processing, Computer-Assisted; Lung; Magnetic Resonance Imaging; Models, Anatomic; Phantoms, Imaging; Reproducibility of Results; Thorax;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/42.764893
Filename :
764893
Link To Document :
بازگشت