DocumentCode :
1511278
Title :
Multioriented Video Scene Text Detection Through Bayesian Classification and Boundary Growing
Author :
Shivakumara, Palaiahnakote ; Sreedhar, Rushi Padhuman ; Phan, Trung Quy ; Lu, Shijian ; Tan, Chew Lim
Author_Institution :
Sch. of Comput., Nat. Univ. of Singapore, Singapore, Singapore
Volume :
22
Issue :
8
fYear :
2012
Firstpage :
1227
Lastpage :
1235
Abstract :
Multioriented text detection in video frames is not as easy as detection of captions or graphics or overlaid texts, which usually appears in the horizontal direction and has high contrast compared to its background. Multioriented text generally refers to scene text that makes text detection more challenging and interesting due to unfavorable characteristics of scene text. Therefore, conventional text detection methods may not give good results for multioriented scene text detection. Hence, in this paper, we present a new enhancement method that includes the product of Laplacian and Sobel operations to enhance text pixels in videos. To classify true text pixels, we propose a Bayesian classifier without assuming a priori probability about the input frame but estimating it based on three probable matrices. Three different ways of clustering are performed on the output of the enhancement method to obtain the three probable matrices. Text candidates are obtained by intersecting the output of the Bayesian classifier with the Canny edge map of the input frame. A boundary growing method is introduced to traverse the multioriented scene text lines using text candidates. The boundary growing method works based on the concept of nearest neighbors. The robustness of the method has been tested on a variety of datasets that include our own created data (nonhorizontal and horizontal text data) and two publicly available data, namely, video frames of Hua and complex scene text data of ICDAR 2003 competition (camera images). Experimental results show that the performance of the proposed method is encouraging compared with results of existing methods in terms of recall, precision, F-measures, and computational times.
Keywords :
Bayes methods; edge detection; image classification; image enhancement; matrix algebra; object detection; pattern clustering; text detection; video signal processing; Bayesian classification; Canny edge map; Hua scene text data; Laplacian operations; Sobel operations; boundary growing method; complex scene text data; multioriented scene text lines; multioriented video scene text detection method; probable matrices; text candidates; true text pixel classification; video enhancement method; video frames; Bayesian methods; Cameras; Feature extraction; Graphics; Image color analysis; Image edge detection; Laplace equations; Bayesian classifier; Laplacian–Sobel product (LSP); boundary growing; maximum gradient difference; multioriented video scene text detection; text candidate detection;
fLanguage :
English
Journal_Title :
Circuits and Systems for Video Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8215
Type :
jour
DOI :
10.1109/TCSVT.2012.2198129
Filename :
6196211
Link To Document :
بازگشت