DocumentCode :
1511370
Title :
A modal decomposition of the Hopf normal form coefficient
Author :
Howell, Frederic ; Venkatasubramanian, Vaithianathan
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA
Volume :
46
Issue :
7
fYear :
2001
fDate :
7/1/2001 12:00:00 AM
Firstpage :
1080
Lastpage :
1083
Abstract :
The local stability of a nonlinear dynamical system at an equilibrium point with a pair of purely imaginary eigenvalues can be assessed through the computation of a cubic Hopf normal form coefficient, assuming the remaining eigenvalues have negative real parts. In this paper, a modal decomposition of the Hopf coefficient is proved. The decomposition provides a new methodology for analyzing the Hopf cubic normal form coefficient in a formal way. The framework is illustrated by nonlinear stability analysis of two control designs where it is shown that the Hopf coefficient can be stabilized through modal nonlinear feedbacks
Keywords :
bifurcation; control system analysis; eigenvalues and eigenfunctions; feedback; nonlinear control systems; nonlinear dynamical systems; stability; cubic Hopf normal form coefficient; eigenvalues; equilibrium point; local stability; modal decomposition; modal nonlinear feedbacks; nonlinear dynamical system; nonlinear stability analysis; purely imaginary eigenvalues; Bifurcation; Control design; Eigenvalues and eigenfunctions; Feedback; Image analysis; Jacobian matrices; Nonlinear dynamical systems; Nonlinear systems; Stability analysis; Taylor series;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.935059
Filename :
935059
Link To Document :
بازگشت