Title :
High-Precision Position Control of a Linear-Switched Reluctance Motor Using a Self-Tuning Regulator
Author :
Zhao, Shi Wei ; Cheung, Norbert C. ; Gan, Wai-Chuen ; Yang, Jin Ming
Author_Institution :
Dept. of Electr. Eng., Hong Kong Polytech. Univ., Kowloon, China
Abstract :
High-precision position control of linear-switched reluctance motor (LSRM) is important in motion-control industry. The static model-based controller sometimes cannot give satisfactory output performance due to the inherent nonlinearities of LSRM and the uncertainties of the system. In this paper, a self-tuning regulator (STR) based on the pole-placement algorithm is proposed for high-precision position tracking of the LSRM. Following the time-scale characteristics analysis of LSRM position-tracking system and force-characteristic investigation, the position-tracking model is treated as a second-order system. Different from the static model-based control schemes, the dynamic model of the LSRM can be obtained by online estimation. Also, some practical aspects are taken into account. Owing to the unmodeled dynamics and high-frequency measurement noises, there are some oscillations in the practical control signals, and they can be reduced by a properly designed filter. Both the simulation and experimental results demonstrate that, in the control of the proposed STR, the position-tracking system can reproduce the reference signal with the desired performance in harsh ambient. These results confirm that the method is effective and robust in the high-precision position tracking of LSRM.
Keywords :
linear synchronous motors; machine control; position control; reluctance motors; self-adjusting systems; LSRM position-tracking system; force-characteristic investigation; high-frequency measurement noises; high-precision position control; high-precision position tracking; linear-switched reluctance motor; motion-control industry; online estimation; pole-placement algorithm; reference signal; second-order system; self-tuning regulator; static model-based control schemes; time-scale characteristics analysis; Linear-switched reluctance motor (LSRM); motor-winding-excitation scheme; nonlinear characteristic; position control; saturation; self-tuning regulator (STR);
Journal_Title :
Power Electronics, IEEE Transactions on
DOI :
10.1109/TPEL.2010.2051685