DocumentCode :
1511384
Title :
On Kalman-Yakubovich-Popov lemma for stabilizable systems
Author :
Collado, Joaquin ; Lozano, Rogelio ; Johansson, Rolf
Author_Institution :
Fac. de Ing. Mecanica y Electrica, Univ. Autonoma de Nuevo Leon, Mexico
Volume :
46
Issue :
7
fYear :
2001
fDate :
7/1/2001 12:00:00 AM
Firstpage :
1089
Lastpage :
1093
Abstract :
The Kalman-Yakubovich-Popov (KYP) lemma has been a cornerstone in system theory and network analysis and synthesis. It relates an analytic property of a square transfer matrix in the frequency domain to a set of algebraic equations involving parameters of a minimal realization in time domain. This note proves that the KYP lemma is also valid for realizations which are stabilizable and observable
Keywords :
Popov criterion; circuit stability; frequency-domain analysis; graph theory; network analysis; stability; system theory; time-domain analysis; transfer function matrices; KYP lemma; Kalman-Yakubovich-Popov lemma; algebraic equations; frequency domain; minimal realization; network analysis; network synthesis; square transfer matrix; stabilizable systems; time domain; Automatic control; Ellipsoids; Equations; Filtering; Linear matrix inequalities; Robust control; Robustness; State estimation; Uncertain systems; Uncertainty;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.935061
Filename :
935061
Link To Document :
بازگشت