Title :
Bayesian Blind Deconvolution From Differently Exposed Image Pairs
Author :
Babacan, Sevket Derin ; Wang, Jingnan ; Molina, Rafael ; Katsaggelos, Aggelos K.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA
Abstract :
Photographs acquired under low-lighting conditions require long exposure times and therefore exhibit significant blurring due to the shaking of the camera. Using shorter exposure times results in sharper images but with a very high level of noise. In this paper, we address the problem of utilizing two such images in order to obtain an estimate of the original scene and present a novel blind deconvolution algorithm for solving it. We formulate the problem in a hierarchical Bayesian framework by utilizing prior knowledge on the unknown image and blur, and also on the dependency between the two observed images. By incorporating a fully Bayesian analysis, the developed algorithm estimates all necessary model parameters along with the unknown image and blur, such that no user-intervention is needed. Moreover, we employ a variational Bayesian inference procedure, which allows for the statistical compensation of errors occurring at different stages of the restoration, and also provides uncertainties of the estimates. Experimental results with synthetic and real images demonstrate that the proposed method provides very high quality restoration results and compares favorably to existing methods even though no user supervision is needed.
Keywords :
Bayes methods; deconvolution; error compensation; image restoration; parameter estimation; blind deconvolution algorithm; camera shaking; hierarchical Bayesian analysis; image blurring; image restoration; parameter estimation; statistical error compensation; Bayesian methods; blind deconvolution; image stabilization; parameter estimation; variational distribution approximations;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2010.2052263