DocumentCode :
1512474
Title :
A neural network for predicting decoder error in turbo decoders
Author :
Buckley, M. Eoin ; Wicker, Stephen B.
Author_Institution :
Sch. of Electr. Eng., Cornell Univ., Ithaca, NY, USA
Volume :
3
Issue :
5
fYear :
1999
fDate :
5/1/1999 12:00:00 AM
Firstpage :
145
Lastpage :
147
Abstract :
It is shown that a neural network can be trained to predict the presence of errors in turbo-decoded data. The inputs to the network are samples of the cross entropy of the component decoder outputs at two or more time instants. Such a neural network can be used as a trigger for retransmission requests at either the beginning or at the conclusion of the decoding process, providing improved reliability performance and lower average decoding complexity than turbo decoding with CRC error detection.
Keywords :
automatic repeat request; coding errors; computational complexity; decoding; entropy; learning (artificial intelligence); neural nets; protocols; turbo codes; ARQ protocols; CRC error detection; average decoding complexity; component decoder outputs; cross entropy; decoder error prediction; neural network; reliability performance; retransmission requests; training; turbo decoders; turbo-decoded data; AWGN; Computational complexity; Convergence; Cyclic redundancy check; Entropy; Intelligent networks; Iterative decoding; Multidimensional systems; Neural networks; Turbo codes;
fLanguage :
English
Journal_Title :
Communications Letters, IEEE
Publisher :
ieee
ISSN :
1089-7798
Type :
jour
DOI :
10.1109/4234.766850
Filename :
766850
Link To Document :
بازگشت