Title :
Analysis of Energy Dissipation in Resistive Superconducting Fault-Current Limiters for Optimal Power System Performance
Author :
Blair, Steven M. ; Booth, Campbell D. ; Singh, Nand K. ; Burt, Graeme M. ; Bright, Chris G.
Author_Institution :
Dept. of Electron. & Electr. Eng., Univ. of Strathclyde, Glasgow, UK
Abstract :
Fault levels in electrical distribution systems are rising due to the increasing presence of distributed generation, and this rising trend is expected to continue in the future. Superconducting fault-current limiters (SFCLs) are a promising solution to this problem. This paper describes the factors that govern the selection of optimal SFCL resistance. The total energy dissipated in an SFCL during a fault is particularly important for estimating the recovery time of the SFCL; the recovery time affects the design, planning, and operation of electrical systems using SFCLs to manage fault levels. Generic equations for energy dissipation are established in terms of fault duration, SFCL resistance, source impedance, source voltage, and fault inception angles. Furthermore, using an analysis that is independent of superconductor material, it is shown that the minimum required volume of superconductors linearly varies with SFCL resistance but, for a given level of fault-current limitation and power rating, is independent of system voltage and superconductor resistivity. Hence, there is a compromise between a shorter recovery time, which is desirable, and the cost of the volume of superconducting material needed for the resistance required to achieve the shorter recovery time.
Keywords :
distributed power generation; power distribution faults; power generation faults; superconducting fault current limiters; superconducting materials; distributed generation; electrical distribution systems; energy dissipation; fault duration; fault inception angles; fault levels; optimal SFCL resistance; optimal power system performance; power rating; resistive superconducting fault-current limiters; source impedance; source voltage; superconductor material; superconductor resistivity; Circuit faults; Energy dissipation; Fault currents; Impedance; Resistance; Superconducting filaments and wires; Superconducting integrated circuits; Distributed generation (DG); fault-current limitation; low carbon; power system protection; superconducting fault-current limiter (SFCL);
Journal_Title :
Applied Superconductivity, IEEE Transactions on
DOI :
10.1109/TASC.2011.2129518