DocumentCode :
1514401
Title :
Fast Localization and Segmentation of Optic Disk in Retinal Images Using Directional Matched Filtering and Level Sets
Author :
Yu, H. ; Barriga, E.S. ; Agurto, C. ; Echegaray, S. ; Pattichis, M.S. ; Bauman, W. ; Soliz, P.
Author_Institution :
VisionQuest Biomed., Albuquerque, NM, USA
Volume :
16
Issue :
4
fYear :
2012
fDate :
7/1/2012 12:00:00 AM
Firstpage :
644
Lastpage :
657
Abstract :
The optic disk (OD) center and margin are typically requisite landmarks in establishing a frame of reference for classifying retinal and optic nerve pathology. Reliable and efficient OD localization and segmentation are important tasks in automatic eye disease screening. This paper presents a new, fast, and fully automatic OD localization and segmentation algorithm developed for retinal disease screening. First, OD location candidates are identified using template matching. The template is designed to adapt to different image resolutions. Then, vessel characteristics (patterns) on the OD are used to determine OD location. Initialized by the detected OD center and estimated OD radius, a fast, hybrid level-set model, which combines region and local gradient information, is applied to the segmentation of the disk boundary. Morphological filtering is used to remove blood vessels and bright regions other than the OD that affect segmentation in the peripapillary region. Optimization of the model parameters and their effect on the model performance are considered. Evaluation was based on 1200 images from the publicly available MESSIDOR database. The OD location methodology succeeded in 1189 out of 1200 images (99% success). The average mean absolute distance between the segmented boundary and the reference standard is 10% of the estimated OD radius for all image sizes. Its efficiency, robustness, and accuracy make the OD localization and segmentation scheme described herein suitable for automatic retinal disease screening in a variety of clinical settings.
Keywords :
biomedical optical imaging; blood vessels; diseases; eye; image matching; image segmentation; medical image processing; neurophysiology; optimisation; MESSIDOR database; OD localization algorithm; automatic eye disease screening; directional matched filtering; fast localization; gradient information; image segmentation; level sets; model optimization; morphological filtering; optic disk center; optic nerve pathology; retinal disease screening; retinal images; retinal pathology; segmentation algorithm; segmented boundary; template matching; vessel characteristics; Databases; Diseases; Filtering; Image color analysis; Image segmentation; Lighting; Retina; Automatic eye disease screening; level set segmentation; optic disk (OD) localization; parameter optimization; Algorithms; Databases, Factual; Diagnostic Techniques, Ophthalmological; Humans; Image Interpretation, Computer-Assisted; Image Processing, Computer-Assisted; Optic Disk; Retinal Diseases;
fLanguage :
English
Journal_Title :
Information Technology in Biomedicine, IEEE Transactions on
Publisher :
ieee
ISSN :
1089-7771
Type :
jour
DOI :
10.1109/TITB.2012.2198668
Filename :
6198352
Link To Document :
بازگشت