Title :
Exciton–Exciton Interaction in CdWO
Under Resonant Excitation by Intense Femtosecond Laser Pulses
Author :
Nagirnyi, V. ; Dolgov, S. ; Grigonis, R. ; Kirm, M. ; Nagornaya, L.L. ; Savikhin, F. ; Sirutkaitis, V. ; Vielhauer, S. ; Vasil, A.
Author_Institution :
Inst. of Phys., Univ. of Tartu, Tartu, Estonia
fDate :
6/1/2010 12:00:00 AM
Abstract :
Using time-resolved luminescence spectroscopy, excitation density effects were investigated under conditions of resonant creation of excitons by femtosecond laser pulses in CdWO4 scintillator at room temperature. It was revealed that the decay kinetics of intrinsic emission becomes accelerated and deviates from the exponential law in the initial stage due to the Förster dipole-dipole interaction of self-trapped excitons. It is shown that these processes originate from the relaxed exciton states even at excitation power up to ~1012 W/cm2. The quantitative analysis of the experimental data is performed, and the dipole-dipole interaction parameters discussed. The results obtained are shown to be of general importance for understanding the problem of nonproportional response of scintillators, whose operation is based on intrinsic luminescence.
Keywords :
cadmium compounds; excitons; laser beam effects; luminescence; resonant states; scintillation; time resolved spectra; CdWO4; Förster dipole-dipole interaction parameters; excitation density effects; excitation power; exciton-exciton interaction; exponential law; intense femtosecond laser pulses; intrinsic emission decay kinetics; intrinsic luminescence; nonproportional scintillator response; relaxed exciton states; resonant excitation; resonant excitons creation; room temperature; self-trapped excitons; temperature 293 K to 298 K; time-resolved luminescence spectroscopy; Acceleration; Excitons; Kinetic theory; Laser excitation; Luminescence; Optical pulses; Performance analysis; Resonance; Spectroscopy; Temperature; Excitation density effects; dipole–dipole interaction; excitons; luminescence;
Journal_Title :
Nuclear Science, IEEE Transactions on
DOI :
10.1109/TNS.2009.2036430