DocumentCode :
1520019
Title :
Relaxation algorithms for MAP estimation of gray-level images with multiplicative noise
Author :
Simchony, Tal ; Chellappa, Ramalingam ; Lichtenstein, Zeev
Author_Institution :
Signal & Image Processing Inst., Univ. of Southern California, Los Angeles, CA, USA
Volume :
36
Issue :
3
fYear :
1990
fDate :
5/1/1990 12:00:00 AM
Firstpage :
608
Lastpage :
613
Abstract :
The authors present a comparison between stochastic and deterministic relaxation algorithms for maximum a posteriori estimation of gray-level images modeled by noncausal Gauss-Markov random fields (GMRF) and corrupted by film grain noise. The degradation involves nonlinear transformation and multiplicative noise. Parameters for the GMRF model were estimated from the original image using maximum-likelihood techniques. To overcome modeling errors, a constraint minimization approach is suggested for estimating the parameters to ensure the positivity of the power spectral density function. Real image experiments with various noise variances and magnitudes of the nonlinear transformation are presented
Keywords :
Bayes methods; Markov processes; parameter estimation; picture processing; random noise; Bayesian approach; MLE; constraint minimization approach; deterministic relaxation algorithms; film grain noise; gray-level images; maximum a posteriori estimation; maximum likelihood estimation; multiplicative noise; noncausal Gauss-Markov random fields; nonlinear transformation; parameter estimation; power spectral density function; stochastic relaxation algorithms; Degradation; Density functional theory; Gaussian noise; Image converters; Maximum likelihood estimation; Parameter estimation; Prototypes; Quantization; Stochastic resonance; Strontium;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.54906
Filename :
54906
Link To Document :
بازگشت