Title :
Dynamic Head-Disk Interface Instabilities With Friction for Light Contact (Surfing) Recording
Author :
Vakis, Antonis I. ; Lee, Sung-Chang ; Polycarpou, Andreas A.
Author_Institution :
Dept. of Mech. Sci. & Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
Abstract :
Recent advances in hard-disk drive technology involve the use of a thermal fly-height control (TFC) pole tip protrusion to bring the read/write recording elements of the slider closer to the disk surface and thus achieve terabit per square inch recording densities. A dynamic, contact mechanics-based friction model of the head-disk interface (HDI) that includes roughness and accounts for the TFC geometry and its influence on the HDI dynamics is presented. The model is based on physical parameters and does not include any empirical coefficients. Experimental flyability/touchdown measurements were performed and used to examine in detail the HDI contact criterion in the presence of surface roughness and dynamic microwaviness. Using the model, a procedure is outlined that identifies the optimal clearance and light contact conditions, i.e., the amount of thermal actuation that minimizes, both, the clearance, as well as the flying height modulation. Through calculation of the time varying interfacial forces, mean pressure and shear stress at the HDI can be predicted and used to characterize the contact regime. Based on our results, a light contact regime with reduced bouncing vibrations and low stresses (thus, low wear) that would enable surfing recording is identified.
Keywords :
disc drives; friction; hard discs; magnetic heads; surface roughness; thermal analysis; HDI dynamics; TFC geometry; contact mechanics-based friction model; dynamic microwaviness; flyability measurement; hard-disk drive; head-disk interface; light contact recording; light contact surfing; mean pressure; shear stress; surface roughness; thermal actuation; thermal fly-height control; time varying interfacial forces; touchdown measurement; Disk recording; Friction; Geometry; Hard disks; Optical modulation; Performance evaluation; Rough surfaces; Solid modeling; Surface roughness; Thermal stresses; Dynamic model; friction; hard-disk drive (HDD); head-disk interface (HDI); thermal fly-height control (TFC);
Journal_Title :
Magnetics, IEEE Transactions on
DOI :
10.1109/TMAG.2009.2029410