Title :
Tb/s Coherent Optical OFDM Systems Enabled by Optical Frequency Combs
Author :
Yi, Xingwen ; Fontaine, Nicolas K. ; Scott, Ryan P. ; Yoo, Sang-Im
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA
fDate :
7/15/2010 12:00:00 AM
Abstract :
This paper discusses the realization of terabit per second high speed and high spectral-efficiency optical transmissions using much lower speed electronics and optoelectronics through parallel processing of coherent optical frequency combs at both the transmitter and receiver. The coherent and parallel processing enables electrical-to-optical and optical-to-electrical (E/O and O/E) conversion of wide-bandwidth optical signals which would otherwise exceeds the capability of conventional optoelectronics. In the first experiment, an optical frequency comb (OFC) generator provides 32 comb lines with less than 5-dB power variation. Subsequently, 1.008-Tb/s modulation capability is realized on 32 × 106 OFDM subcarriers with 16-QAM modulation in a 318-GHz seamless optical bandwidth. It demonstrates an effective way to generate an optical OFDM signal with tens of times wider optical bandwidth than that of analog-to-digital converters and digital-to-analog converters (ADC/DAC). The second experiment demonstrates simultaneous detection of multiple OFDM bands from a 32-band coherent optical OFDM signal using another optical frequency comb, a silica planar lightwave circuit (PLC) that implemented the major optical devices, and two pairs of balanced photodiodes. The experimental results indicate prospects for an optically integrated coherent optical OFDM system on a chip-scale platform.
Keywords :
OFDM modulation; integrated optics; optical communication; optical modulation; optical receivers; optical transmitters; quadrature amplitude modulation; 16-QAM modulation; analog-to-digital converters; balanced photodiodes; bandwidth 318 MHz; bit rate 1.008 Tbit/s; coherent optical OFDM systems; digital-to-analog converters; electrical-to-optical conversion; optical frequency comb generator; optical receiver; optical transmitter; optical-to-electrical conversion; parallel processing; planar lightwave circuit; Coherent communication; OFDM; modulation format; optical frequency comb; signal processing;
Journal_Title :
Lightwave Technology, Journal of
DOI :
10.1109/JLT.2010.2053348