DocumentCode :
1520647
Title :
Smoothing variable-bit-rate video in an internetwork
Author :
Rexford, Jennifer ; Towsley, Don
Author_Institution :
AT&T Labs. Res., Florham Park, NJ, USA
Volume :
7
Issue :
2
fYear :
1999
fDate :
4/1/1999 12:00:00 AM
Firstpage :
202
Lastpage :
215
Abstract :
The burstiness of compressed video complicates the provisioning of network resources for emerging multimedia services. For stored video applications, the server can smooth the variable-bit-rate stream by transmitting frames into the client playback buffer in advance of each burst. Drawing on prior knowledge of the frame lengths and client buffer size, such bandwidth-smoothing techniques can minimize the peak and variability of the rate requirements while avoiding underflow and overflow of the playback buffer. However, in an internetworking environment, a single service provider typically does not control the entire path from the stored-video server to the client buffer. This paper presents efficient techniques for transmitting variable-bit-rate video across a portion of the route, from an ingress node to an egress node. We develop efficient techniques for minimizing the network bandwidth requirements by characterizing how the peak transmission rate varies as a function of the playback delay and the buffer allocation at the two nodes. We present an efficient algorithm for minimizing both the playback delay and the buffer allocation, subject to a constraint on the peak transmission rate. We then describe how to compute an optimal transmission schedule for a sequence of nodes by solving a collection of independent single-link problems, and show that the optimal resource allocation places all buffers at the ingress and egress nodes. Experiments with motion-JPEG and MPEG traces show the interplay between buffer space, playback delay, and bandwidth requirements for a collection of full-length video traces
Keywords :
buffer storage; client-server systems; internetworking; multimedia communication; visual communication; bandwidth-smoothing; buffer allocation; buffer space; burstiness; client buffer; compressed video; egress node; emerging multimedia services; independent single-link problems; ingress node; internetwork; network resources; optimal resource allocation; optimal transmission schedule; peak transmission rate; playback delay; stored video applications; variable-bit-rate stream; variable-bit-rate video; Bandwidth; Buffer storage; Delay; Internet; Internetworking; Network servers; Smoothing methods; Streaming media; Video compression; Web server;
fLanguage :
English
Journal_Title :
Networking, IEEE/ACM Transactions on
Publisher :
ieee
ISSN :
1063-6692
Type :
jour
DOI :
10.1109/90.769768
Filename :
769768
Link To Document :
بازگشت