Title :
Genetics-Based Machine Learning for Rule Induction: State of the Art, Taxonomy, and Comparative Study
Author :
Fernández, Alberto ; García, Salvador ; Luengo, Julián ; Bernadó-Mansilla, Ester ; Herrera, Francisco
Author_Institution :
Dept. of Comput. Sci. & Artificial Intell., Univ. of Granada, Granada, Spain
Abstract :
The classification problem can be addressed by numerous techniques and algorithms which belong to different paradigms of machine learning. In this paper, we are interested in evolutionary algorithms, the so-called genetics-based machine learning algorithms. In particular, we will focus on evolutionary approaches that evolve a set of rules, i.e., evolutionary rule-based systems, applied to classification tasks, in order to provide a state of the art in this field. This paper has a double aim: to present a taxonomy of the genetics-based machine learning approaches for rule induction, and to develop an empirical analysis both for standard classification and for classification with imbalanced data sets. We also include a comparative study of the genetics-based machine learning (GBML) methods with some classical non-evolutionary algorithms, in order to observe the suitability and high potential of the search performed by evolutionary algorithms and the behavior of the GBML algorithms in contrast to the classical approaches, in terms of classification accuracy.
Keywords :
genetic algorithms; knowledge based systems; learning (artificial intelligence); pattern classification; classification tasks; evolutionary algorithms; evolutionary rule-based systems; genetics-based machine learning algorithm; rule induction; Artificial intelligence; Classification tree analysis; Computer science; Evolutionary computation; Knowledge based systems; Knowledge representation; Machine learning; Machine learning algorithms; Standards development; Taxonomy; Classification; evolutionary algorithms; genetics-based machine learning; imbalanced data sets; learning classifier systems; rule induction; taxonomy;
Journal_Title :
Evolutionary Computation, IEEE Transactions on
DOI :
10.1109/TEVC.2009.2039140