Title :
1.55-μm buried-heterostructure VCSELs with InGaAsP/lnP-GaAs/AlAs DBRs on a GaAs substrate
Author :
Ohiso, Yoshitaka ; Okamoto, Hiroshi ; Iga, Ryuzo ; Kishi, Kenji ; Tateno, Kouta ; Amano, Chikara
Author_Institution :
NTT Photonics Labs., Kanagawa, Japan
fDate :
9/1/2001 12:00:00 AM
Abstract :
We demonstrate 1.55-μm buried-heterostructure (BH) vertical-cavity surface-emitting lasers (VCSELs) on a GaAs substrate. Thin-film wafer-fusion technology enables InP-based BH VCSELs to be fabricated on GaAs/AlAs distributed Bragg reflectors. Detailed investigations of the device resistance are also described. As a result of introducing BH and obtaining low device resistance, the threshold current density under CW operation shows the independence of mesa size due to a strong index guide and small noneffective current. A 5-μm VCSEL exhibits a record threshold current of 380 μA at 20°C. This VCSEL also operates with single transverse mode up to the maximum optical output power
Keywords :
III-V semiconductors; aluminium compounds; current density; distributed Bragg reflector lasers; gallium arsenide; gallium compounds; indium compounds; laser beams; laser modes; optical fabrication; semiconductor lasers; surface emitting lasers; wafer bonding; 1.55 mum; 20 C; 380 muA; 5 mum; CW operation; GaAs; GaAs substrate; GaAs-AlAs; GaAs/AlAs distributed Bragg reflectors; InGaAsP-InP-GaAs-AlAs; InGaAsP/lnP-GaAs/AlAs DBRs; InP-based buried heterostructure VCSELs; VCSEL; VCSELs; buried-heterostructure VCSELs; buried-heterostructure vertical-cavity surface-emitting lasers; device resistance; fabrication; index guide; low device resistance; maximum optical output power; mesa size; noneffective current; record threshold current; single transverse mode; thin-film wafer-fusion technology; threshold current; threshold current density; Distributed Bragg reflectors; Gallium arsenide; Optical recording; Power generation; Substrates; Surface emitting lasers; Surface resistance; Threshold current; Transistors; Vertical cavity surface emitting lasers;
Journal_Title :
Quantum Electronics, IEEE Journal of