Title :
Unpredictability-Enhanced Chaotic Vertical-Cavity Surface-Emitting Lasers With Variable-Polarization Optical Feedback
Author :
Xiang, Shui Ying ; Pan, Wei ; Luo, Bin ; Yan, Lian Shan ; Zou, Xi Hua ; Jiang, Ning ; Yang, Lei ; Zhu, Hong Na
Author_Institution :
Sch. of Inf. Sci. & Technol., Southwest Jiaotong Univ., Chengdu, China
fDate :
7/15/2011 12:00:00 AM
Abstract :
Variable-polarization optical feedback (VPOF) induced unpredictability enhancement in a vertical-cavity surface-emitting laser (VCSEL) is investigated numerically based on the spin-flip model. The chaotic unpredictability is evaluated quantitatively via an information-theory-based quantifier, the permutation entropy (PE). The role of polarizer angle on the chaotic unpredictability is focused on. The influences of feedback strengths, feedback delays, and injection currents are also considered. A critical polarizer angle, at which the PE reaches its maximum, is existed for relatively high feedback strength and injection current. The representations on Poincaré sphere are further given to provide physical insight into the unpredictability enhancement. Besides, larger feedback strength leads to lower critical polarizer angle, while larger injection current contributes to higher critical polarizer angle. These results show that, by selecting critical polarizer angles, the unpredictability of chaotic signals of VCSELs with VPOF can be enhanced significantly, which is extremely useful for VCSELs-based chaotic communication systems.
Keywords :
chaotic communication; information theory; laser cavity resonators; laser feedback; optical chaos; optical communication equipment; optical polarisers; semiconductor lasers; surface emitting lasers; Poincare sphere; VCSEL-based chaotic communication systems; feedback delays; information-theory-based quantifier; injection currents; permutation entropy; polarizer angle; spin-flip model; unpredictability-enhanced chaotic vertical-cavity surface-emitting lasers; variable-polarization optical feedback; Chaotic communication; Delay; Laser feedback; Time series analysis; Vertical cavity surface emitting lasers; Chaotic unpredictability; permutation entropy; variable-polarization optical feedback; vertical-cavity surface-emitting lasers;
Journal_Title :
Lightwave Technology, Journal of
DOI :
10.1109/JLT.2011.2157460