DocumentCode :
1525295
Title :
(n,K) -User Interference Channels: Degrees of Freedom
Author :
Tajer, Ali ; Wang, Xiaodong
Author_Institution :
Dept. of Electr. & Comput. Eng., Wayne State Univ., Detroit, MI, USA
Volume :
58
Issue :
8
fYear :
2012
Firstpage :
5338
Lastpage :
5353
Abstract :
This paper analyzes the gains of opportunistic communication in multiuser interference channels. Consider a fully connected n-user Gaussian interference channel. At each time instance, only K≤n transmitters are allowed to be communicating with their respective receivers and the remaining (n-K) transmitter-receiver pairs remain inactive. For finite n, if the transmitters can acquire the instantaneous channel realizations and if all channel gains are bounded away from zero and infinity, the seminal results on interference alignment establish that for any K arbitrary active pairs the total number of spatial degrees of freedom per orthogonal time and frequency domain is K/2. In dense networks (n → ∞), however, as the size of the network increases, it becomes less likely to sustain the bounding conditions on the channel gains. By exploiting this fact, we show that when n obeys certain scaling laws, by opportunistically and dynamically selecting the K active pairs at each time instance, the number of degrees of freedom can exceed K/2 and in fact can be made arbitrarily close to K. More specifically, for single-antenna transmitters and receivers, the network size scaling as n ∈ ω(SNRd⌈d-1⌉) when power allocation is allowed and scaling as n ∈ ω(SNRd(K-1)) without power allocation are sufficient conditions for achieving d ∈ [1, K] degrees of freedom. Moreover, for achieving these degrees of freedom the transmitters do not require the knowledge of the instantaneous channel realizations. Hence, invoking opportunistic communication in the context of interference channels leads to achieving higher degrees of freedom that are not achievable otherwise. We extend the results for multi-antenna Gaussian interference channels.
Keywords :
Gaussian channels; antennas; frequency-domain analysis; radio receivers; radiofrequency interference; time-domain analysis; wireless channels; (n, K)-user interference channels; arbitrary active pairs; channel gains; dense networks; frequency domain; instantaneous channel realizations; interference alignment; multiantenna Gaussian interference channels; multiuser interference channels; n-user Gaussian interference channel; network size; network size scaling; opportunistic communication; orthogonal time domain; power allocation; scaling laws; single-antenna receivers; single-antenna transmitters; spatial degrees of freedom; transmitter-receiver pairs; Decoding; Interference channels; Receivers; Resource management; Signal to noise ratio; Transmitters; Degrees of freedom; distributed; interference channel; opportunistic; scaling law;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2201373
Filename :
6205392
Link To Document :
بازگشت