DocumentCode :
1527930
Title :
A Visual Detection System for Rail Surface Defects
Author :
Li, Qingyong ; Ren, Shengwei
Author_Institution :
Sch. of Comput. & Inf. Technol., Beijing Jiaotong Univ., Beijing, China
Volume :
42
Issue :
6
fYear :
2012
Firstpage :
1531
Lastpage :
1542
Abstract :
Discrete surface defects are the most common anomalies of rails and they should be carefully inspected. However, it is a challenge to detect such defects in a vision system because of illumination inequality and the variation of reflection property of rail surfaces. This paper presents an intelligent vision detection system (VDS) for discrete surface defects and focuses on two key issues of VDS: image enhancement and automatic thresholding. We propose the local Michelson-like contrast (MLC) measure to enhance rail images. MLC-based method is nonlinear and illumination independent; therefore, it notably improves the distinction between defects and background. In addition, we put forward the new automatic thresholding method-proportion emphasized maximum entropy (PEME) thresholding algorithm. PEME selects a threshold that maximizes the object entropy and meanwhile keeps the defect proportion in a low level. Our experimental results demonstrate that VDS detects the Type-II defects with a recall of 91.61% and Type-I defects with a recall of 88.53%, and the proposed MLC-based image enhancement method and PEME thresholding algorithm outperform the related well-established approaches.
Keywords :
computer vision; image enhancement; rails; Michelson like contrast measure; PEME thresholding algorithm; automatic thresholding method; discrete surface defects; illumination inequality; image enhancement; intelligent vision detection system; object entropy; proportion emphasized maximum entropy thresholding algorithm; rail surface defects; reflection property; vision system; visual detection system; Histograms; Image enhancement; Inspection; Lighting; Machine vision; Rails; Visualization; Automatic thresholding; contrast measure; image enhancement; maximum entropy (ME); rail surface defects;
fLanguage :
English
Journal_Title :
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on
Publisher :
ieee
ISSN :
1094-6977
Type :
jour
DOI :
10.1109/TSMCC.2012.2198814
Filename :
6208896
Link To Document :
بازگشت