Title :
Neural computation approach for developing a 3D shape reconstruction model
Author :
Cho, Siu-Yeung ; Chow, Tommy W S
Author_Institution :
Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China
fDate :
9/1/2001 12:00:00 AM
Abstract :
The shape from shading problem refers to the well-known fact that most real images usually contain specular components and are affected by unknown reflectivity. In this paper, these limitations are addressed and a new neural-based 3D shape reconstruction model is proposed. The idea behind this approach is to optimize a proper reflectance model by learning the parameters of the proposed neural reflectance model. In order to do this, new neural-based reflectance models are presented. The feedforward neural network (FNN) model is able to generalize the diffuse term, while the RBF model is able to generalize the specular term. A hybrid structure of FNN-based and RBF-based models is also presented because most real surfaces are usually neither Lambertian models nor ideally specular models. Experimental results, including synthetic and real images, are presented to demonstrate the performance of our approach given different specular effects, unknown illuminate conditions, and different noise environments
Keywords :
computer vision; feedforward neural nets; image reconstruction; learning (artificial intelligence); radial basis function networks; reflectivity; stereo image processing; 3D shape reconstruction; RBF neural network; feedforward neural network; image reconstruction; learning; reflectance model; shape from shading; specular reflection; Brightness; Computer vision; Cost function; Image reconstruction; Multi-layer neural network; Neural networks; Reflectivity; Shape; Surface reconstruction; Two dimensional displays;
Journal_Title :
Neural Networks, IEEE Transactions on