DocumentCode :
1528821
Title :
Multivariate Multilinear Regression
Author :
Su, Ya ; Gao, Xinbo ; Li, Xuelong ; Tao, Dacheng
Author_Institution :
Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
Volume :
42
Issue :
6
fYear :
2012
Firstpage :
1560
Lastpage :
1573
Abstract :
Conventional regression methods, such as multivariate linear regression (MLR) and its extension principal component regression (PCR), deal well with the situations that the data are of the form of low-dimensional vector. When the dimension grows higher, it leads to the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. However, little attention has been paid to such a problem. This paper first adopts an in-depth investigation to the USP in PCR, which answers three questions: 1) Why is USP produced? 2) What is the condition for USP, and 3) How is the influence of USP on regression. With the help of the above analysis, the principal components selection problem of PCR is presented. Subsequently, to address the problem of PCR, a multivariate multilinear regression (MMR) model is proposed which gives a substitutive solution to MLR, under the condition of multilinear objects. The basic idea of MMR is to transfer the multilinear structure of objects into the regression coefficients as a constraint. As a result, the regression problem is reduced to find two low-dimensional coefficients so that the principal components selection problem is avoided. Moreover, the sample size needed for solving MMR is greatly reduced so that USP is alleviated. As there is no closed-form solution for MMR, an alternative projection procedure is designed to obtain the regression matrices. For the sake of completeness, the analysis of computational cost and the proof of convergence are studied subsequently. Furthermore, MMR is applied to model the fitting procedure in the active appearance model (AAM). Experiments are conducted on both the carefully designed synthesizing data set and AAM fitting databases verified the theoretical analysis.
Keywords :
curve fitting; image sampling; principal component analysis; regression analysis; visual databases; AAM fitting databases; MLR; PCR; USP; active appearance model; alternative projection procedure; convergence proof; feature space dimensionality; fitting procedure model; low-dimensional coefficients; low-dimensional vector; multilinear objects; multivariate linear regression; multivariate multilinear regression; principal component regression; principal component selection problem; regression coefficients; regression matrices; under sample problem; Active appearance model; Computational modeling; Linear regression; Noise; Training; Active appearance model (AAM); multivariate linear regression (MLR); principal component regression (PCR); under sample problem (USP);
fLanguage :
English
Journal_Title :
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
Publisher :
ieee
ISSN :
1083-4419
Type :
jour
DOI :
10.1109/TSMCB.2012.2195171
Filename :
6209443
Link To Document :
بازگشت