Title :
Dynamic micromagnetic simulation of the configurational anisotropy of nanoelements
Author :
Fidler, Josef ; Schrefl, Thomas ; Süss, Dieter ; Scholz, Werner
Author_Institution :
Inst. of Appl. & Tech. Phys., Vienna Univ. of Technol., Austria
fDate :
7/1/2001 12:00:00 AM
Abstract :
A finite element method was used to simulate the magnetization reversal of nanostructured Ni80Fe20 elements with zero anisotropy. The numerical results show a strong influence of the size of the cubic and platelet shaped (square and triangular) elements on the switching field. The calculated switching fields range from μ 0H=0.002 to 0.6 T. Differences of the demagnetizing field which arise when the field is applied in different directions lead to configurational anisotropy effects. Platelet shaped elements show identical switching behavior in different directions within the platelet plane. Inhomogeneous magnetization reversal processes become dominant with increasing element size ⩾100 nm and strongly influence the switching behavior
Keywords :
demagnetisation; finite element analysis; iron alloys; magnetic storage; magnetic switching; magnetisation reversal; nanostructured materials; nickel alloys; 0.002 to 0.6 T; 100 nm; Ni80Fe20; NiFe; configurational anisotropy; configurational anisotropy effects; demagnetizing field; dynamic micromagnetic simulation; finite element method; magnetization reversal processes; nanoelements; platelet shaped elements; size ⩾100 nm; switching fields; Anisotropic magnetoresistance; Finite element methods; Magnetic anisotropy; Magnetic switching; Magnetization reversal; Magnetostatics; Magnets; Micromagnetics; Perpendicular magnetic anisotropy; Polarization;
Journal_Title :
Magnetics, IEEE Transactions on