Title :
Linear Regression for Face Recognition
Author :
Naseem, Imran ; Togneri, Roberto ; Bennamoun, Mohammed
Author_Institution :
Sch. of Electr., Electron. & Comput. Eng., Univ. of Western Australia, Crawley, WA, Australia
Abstract :
In this paper, we present a novel approach of face identification by formulating the pattern recognition problem in terms of linear regression. Using a fundamental concept that patterns from a single-object class lie on a linear subspace, we develop a linear model representing a probe image as a linear combination of class-specific galleries. The inverse problem is solved using the least-squares method and the decision is ruled in favor of the class with the minimum reconstruction error. The proposed Linear Regression Classification (LRC) algorithm falls in the category of nearest subspace classification. The algorithm is extensively evaluated on several standard databases under a number of exemplary evaluation protocols reported in the face recognition literature. A comparative study with state-of-the-art algorithms clearly reflects the efficacy of the proposed approach. For the problem of contiguous occlusion, we propose a Modular LRC approach, introducing a novel Distance-based Evidence Fusion (DEF) algorithm. The proposed methodology achieves the best results ever reported for the challenging problem of scarf occlusion.
Keywords :
face recognition; image classification; inverse problems; least squares approximations; regression analysis; distance-based evidence fusion algorithm; face recognition; inverse problem; least-squares method; linear regression classification algorithm; minimum reconstruction error; modular LRC approach; nearest subspace classification; pattern recognition problem; Classification algorithms; Databases; Face recognition; Image reconstruction; Inverse problems; Least squares methods; Linear regression; Pattern recognition; Probes; Protocols; Face recognition; linear regression; nearest subspace classification.; Algorithms; Artificial Intelligence; Biometry; Face; Female; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Least-Squares Analysis; Linear Models; Male; Pattern Recognition, Automated;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2010.128