• DocumentCode
    1531683
  • Title

    Fuzzy model identification for classification of gait events in paraplegics

  • Author

    Ng, Sau Kuen ; Chizeck, Howard Jay

  • Author_Institution
    Dept. of Syst., Control, & Ind. Eng., Case Western Reserve Univ., Cleveland, OH, USA
  • Volume
    5
  • Issue
    4
  • fYear
    1997
  • fDate
    11/1/1997 12:00:00 AM
  • Firstpage
    536
  • Lastpage
    544
  • Abstract
    Fuzzy system identification was applied to a biomedical system for classification purposes. Gait achieved through functional electrical stimulation (FES) of paraplegics was divided using sensor measurements of kinematic variables as inputs to five discrete events. Two identification algorithms were used to estimate the system model. Both max-min and max-product composition were used. Membership functions were either trapezoidal or triangular and all membership functions in a particular universe of discourse had the same shape and size. The universe of discourse was varied by altering the overlap between membership functions. The classification performance was assessed quantitatively, by measuring the percentage of time steps in which the correct event was found, and qualitatively, by observing types of errors. The identification algorithm affected system performance. No difference in classification was found between max-min and max-product composition. The performance was dependent on membership function overlap. A comparison of the classification found using the fuzzy rule base versus that found using a traditional look-up table demonstrated that the fuzzy approach was superior. It is speculated that the use of fuzzy logic decreased errors stemming from sensor noise and/or small variations in the input signals. The performance of this approach was compared to that of a feedforward neural network and the fuzzy system is found superior
  • Keywords
    biomechanics; fuzzy set theory; identification; image classification; knowledge based systems; medical image processing; motion estimation; FES; biomedical system; classification; feedforward neural network; functional electrical stimulation; fuzzy model identification; gait events; kinematic variables; max-min composition; max-product composition; membership function overlap; paraplegics; sensor measurements; trapezoidal membership functions; triangular membership functions; Biomedical measurements; Biosensors; Electric variables measurement; Error correction; Fuzzy systems; Kinematics; Neuromuscular stimulation; Shape; System performance; Time measurement;
  • fLanguage
    English
  • Journal_Title
    Fuzzy Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1063-6706
  • Type

    jour

  • DOI
    10.1109/91.649904
  • Filename
    649904